Determining familial matches with Facial Recognition

Photo courtesy of UCF
Photo courtesy of UCF

Last month, researchers at the University of Central Florida presented a new facial recognition tool at the IEEE Computer Vision and Pattern Recognition conference in Columbus, Ohio. 

While there is no shortage of facial recognition tools used by companies and governments the world over, this one is unique in that its aim is to unite or reunite children with their biological parents.

The university’s Center for Research in Computer Vision initially got to work by creating a database of more than 10,000 images of famous people–such as politicians and celebrities–and their children.

It works by using a specially designed algorithm that breaks the face down into sections, and using various facial parts as comparisons; they are then sorted according to which matches are the most likely.

Though software for this purpose already exists, this tool was anywhere from 3 to 10 percent better than those programs, and it naturally surpasses the recognition capabilities of humans, who base their decisions on appearance rather than the actual science of it. It also reaffirmed the fact that sons resemble their fathers more than their mothers, and daughters resemble their mothers more than their fathers.

What other ways could this tool be useful?

Advertisements

Grammar-like algorithm identifies actions in video

Photo courtesy of http://www.freeimages.co.uk/
Photo courtesy of http://www.freeimages.co.uk/

Body language is a powerful thing, allowing us to gauge the tone and intention of a person, often without accompanying words. But is this a skill that is unique to humans, or are computers also capable of being intuitive?

To date, picking up on the subtext of a person’s movements is still not something machines can do, however, researchers at MIT and UC Irvine have developed an algorithm that can observe small actions in videos and string them together, piecing together an idea of what is occurring. Much like grammar helps create and connect ideas into complete thoughts, the algorithm is capable of not only analyzing what actions are taking place, but guessing what movements will come next.

There are a handful of ways that this technology would benefit humans. For example, if could help an athlete practicing his or her form and technique. Researchers also posit that it could be useful in a future where humans and robots are sharing the same workspace and doing similar tasks.

But with any technological advancement comes the question of cost–not money, but privacy. In this case, would the positives outweigh the negatives? In what ways can you envision this tool being helpful for your everyday tasks?

 

 

Residents enter their buildings using Facial Recognition

Image courtesy of FST21
Image courtesy of FST21

Apartment living has its pros and cons, but one thing many renters can relate to is having to call a locksmith and pay high fees for replacing lost or forgotten keys. However, residents at Manhattan’s Knickerbocker Village don’t have to worry about that.

The 12-building complex, home to 1,600 apartments, recently installed the FST21 SafeRise system.

How it works is that residents are photographed, with a series of body measurements and movements also recorded. This information is then stored in a system that recognizes the residents when they approach an entrance, immediately allowing them to enter.

In addition to the facial recognition technology, the system also includes a ‘digital doorman’ that allows visitors to contract residents via an intercom, or contact the security desk to ask permission to enter.

What are your thoughts on this technology? Would you feel safer knowing your building used facial recognition?

Image Recognition allows fish to navigate

There are countless practical applications of Image Recognition technology, but for every helpful use, there are plenty of “just because” utilizations of ComputerVision. One such example comes from Studio Diip, a Dutch company that has worked on projects ranging from vegetable recognition to automated card recognition, and which has used technology to allow fish in a tank to navigate a vehicle.

How does it work? In short, a camera positioned on the fish watches it swimming in its tank, analyzes this movement to determine the direction it is going, and then directs a car (mounted to the tank) to head in that direction. It’s not much of a scientific breakthrough, but it’s a fun idea.

How might this technology be applied in other ways? In what way can ComputerVision help improve your product?

ComputerVision steps up soldiers’ game

Photo by Bill Jamieson
Photo by Bill Jamieson

ComputerVision has long been of interest to and utilized by the United States government and armed forces, but now it appears as though the army is using this technology to help transform soldiers into expert marksmen.

Tracking Point, a Texas-based startup that specializes in making precision-guided firearms, sold a number of “scope and trigger” kits for use on XM 2010 sniper rifles. The technology allows a shooter to pinpoint and “tag” a target, then use object-tracking technology, combined with a variety of variables (temperature, distance, etc.), to determine the most effective place to fire. The trigger is then locked until the person controlling the weapon has lined up the shot correctly, at which point he or she can pull the trigger.

To learn more about this technology and how it is implemented, watch the following video:

Computer Vision aids flow cytometry

Photo courtesy of the USCD Jacob School of Engineering
Photo courtesy of the USCD Jacob School of Engineering

Engineers at the University of California, San Diego, are using Computer Vision as a means of sorting cells, and thus far have been able to do so at a rate of 38 times faster than before. This process of counting and sorting cells is known as  flow cytometry.

The analysis of the cells helps to categorize them based on their size, shape, and structure, and also can distinguish if they are benign or malignant, information that could be useful for clinical studies and stem cell characterization.

While this type of research was occurring before, it’s a job that has traditionally taken a lot of time. But now, the use of a camera on a microscope can analyze information faster–cutting the time from between 0.4 and 10 seconds to observe and analyze a single frame down to between 11.94 and 151.7 milliseconds.

In what ways do you see this technology making advancements in the medical and clinical world? How else can you imagine it benefitting science?

VISAPP Computer Vision conference extends submission deadline

VISAPP_2014_conference_logoComputer Vision is an interesting kind of technology in many ways, but perhaps one of the most notable things about it is how applicable it is and can be in our every day lives. And although it’s not necessarily a “new” field, it is something that is gaining popularity and recognition in the lives of “normal” people, meaning those who are not scientists, researchers, programmers, etc.

At the start of next year, Lisbon, Portugal will play host to a conference on this very topic, which highlights the work being done in the field and the emerging technologies that can help Computer Vision help people. Currently, VISAPP 2014, the 9th International Conference on Computer Vision Theory and Applications, is accepting paper submissions for the conference, with its submission deadline having been extended until September 18.